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Mechanical Deformation of Dendrites

by Fluid Flow

J. PILLING and A. HELLAWELL

It is generally accepted that liquid agitation during alloy
solidification assists in crystal multiplication, as in dendrite
fragmentation and the detachment of side arms in the
mushy region of a casting. Even without deliberate stirring
by electromagnetic or mechanical means, there is often vig-
orous interdendritic fluid flow promoted by natural ther-
mosolutal convection. Interdendritic fluid flow rates in

metals might be as high as 10 mm s-klU It is the purpose
of this article to examine whether such fluid flow can cause

mechanical deformation of dendrites, sufficient to cause
side arms to bend or break. Metals are so ductile at their

melting points that applied forces could only be expected
to cause bending, as opposed to fracture, although there are
no reports of which we are aware of dendritic arms being
mechanically bent in this way. The following estimates
demonstrate why even bending is not to be expected.

Figure I is an example of an ammonium chloride den-

drite growing into an aqueous solution between two glass
slides, under steady state conditions, with no fluid flow. In
this "alloy," there is a very small solid fraction and wide
primary spacing--this is a fairly extreme example and in a
majority of "real" cases the dendrite side arms would be

shorter and thicker• As is usual, there is considerable rip-
ening of side arms and most of them develop narrow necks
at the roots where they attach to the primary dendrite stem.
There is no significant side arm detachment unless the

growth rate falls and/or the temperature is raised.t-'.-_l
In this analysis, we shall estimate the stress at the root

of a secondary dendrite arm of aluminum arising from the
action of a flow of molten metal past the dendrite arm. The
schematic geometry of the dendrite is shown in Figure 2.
Both the root and main sections of the dendrite are assumed

to be cylindrical with diameters dr and d and lengths L, and
L, respectively. In typical castings, the main diameter

would vary from 10 to 25 p.m, while the root diameters
might be between 5 and 10 _,m. With flow velocities up to
10 -2 ms-' and viscosity of 3.12 × 10 -3 kg m -_ s-', ("l the
upper bound for the Reynolds number would be

v.p.d
Re = --

r/
10 -2"2.7 × l0 s-25 x I0 -_

= = 0.22 [1]
3.2 x 10 -_

so that it is reasonable to assume streamline flow and that

there would be negligible turbulence on the downstream
side of the dendrite arm. The shear stress acting along the
tangential direction on the surface of the cylinder, r,,, due
to drag and the hydrostatic pressure Pr, would be {s}
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The force acting in the v direction (parallel to the flow)
would be

F, = r,- sin (0) + P,," cos (0)

3r/v

2r

[3]

The total force, Fr, acting on the dendrite arm in the direc-

tion of fluid flow can be obtained by integrating F, over
the surface area, A, of the dendrite, i.e.,

F= 2 _ff F, rdOdx
o 0

[4]

since

L n-

A=2fy
0 0

rOdOdx = 2 7"rrL [5]

Thus, approximately, the force per unit length. F, would be

F = 3 7rr/v [6]

which is independent of the radius and would be -3 ×
10-a N m-_ in the current example.

The skin stress in the dendrite arm, as a function of po-
sition along the dendrite arm, can be estimated from

-M(x) • r(x)
o-(x) = [7]

I (r(x))

where M is the bending moment, I the moment of inertia
of the section, and r the radius, all of which vary with
distance from the end of the dendrite arm.

-- Fx 2

M(x) = -- [8]
2

_r (r(x))4
l(r(x)) = [9]

4

An analysis of Eq. [7] shows that the tensile stress increases
parabolically with distance from the far end of the dendrite
arm until the root is reached, with the maximum tensile

stress being -0.01 of the estimated yield strength of the
material at the melting point (Appendix). At the root, the
tensile stress jumps abruptly as the cross section decreases.
The maximum tensile stress at the root of the dendrite arm

is plotted in Figure 3. normalized with respect to the esti-
mated yield strength of the metal for several root radii as
a function of dendrite arm length.

It is apparent from Figure 3 that even with extreme di-
mensions (i.e., large ratio L/r), the stress in a dendnte arm
will lie below that for plastic flow and. in general, that
response to interdendritic fluid flow will only be elastic.
Estimates of the bending deflection using the second mo-
ment area theorem give dendrite tip deflections, 6, of 0.01
p.m < 6 < 0.5 _m for a root radius of 5 /zm and 200 /.tin
< L < 500 /.tin; i.e., any elastic deflection of the dendrite
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Fig. I--NH,CI dendrites growing from aqueous solution under steady state conditions on a gradient stage: growth rate 28/zm s-) and temperature gradient

6.5 K mm-'. Minimum secondary arm necks are of diameters 5 to 10 p,m.
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Fig. 2--Geometry of dendrite arm, length L with root length L,., acted

upon by a fluid flowing with a velocity v,

lower estimate for the elastic modulus and yield stress at
the melting point and that an interdcndritic flow rate of l0 -_
m s -t is probably an upper limit, so that the input has been
weighted toward the possibility of plastic deformation.

Some brief comments on related matters are in order.

( I ) Secondary _rm Necking:. During cooling in the den-
dritic array, dendrites are ripening and coarsening,
but they are also growing, i.e., the average solid frac-
tion is increasing. Consequently, especially during
the earlier stages of ripening, solute rejection occurs
simultaneously, radially, from primary and second-
ary arms, with reinforcement of solute at the junc-
tions or nodes. This locally high solute accumulation
causes the initial necks to develop at the roots of side
arms, where two curvatures develop with radii r_ and
r, of opposite sign (Figures 1 and 4). Therefore, the
depression of the freezing point from curvature is
actually very small:

arm will not, at least visually, be apparent. Thus, dendrite

fragmentation by mechanical deformation is improbable
and other factors cause detachment of side arms.

We note also that these calculations were made with a

= - _ o [1o]
AT,. _'_ r, .

where tZ_,_is the solid liquid surface energy and AS is the
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Fig.3--Calculatedstresslevels,o'.indendntearmswithanassumedflow
rateof]0--"m s-),usingdataForaluminum,expressedasa fractionof
the yield stress, o',, vs arm length for three radii.

pared with values for the broader primary and
secondary cylinders, r3, r4, etc., which are an order
of magnitude smaller. If r, and/or r_,decrease further,
the balance between them and the rest of the assem-

bly obviously becomes very delicate and any slight
perturbation causes almost instantaneous detach-
ment. Mechanical deformation during the brief in-
terval of separation would not be a significant factor
affecting the rate at which this occurred.

(2) Melting-Side Arm Detachment: Entrainment of bulk
liquid behind a dendritic growth front, whether pro-

moted by forced stirring or convective recirculation,
introduces warmer liquid into the mushy array, and,
at first impression, this might be thought to acceler-
ate side arm detachment by melting. However, it

must be remembered that this liquid is always less
concentrated (i.e., is solvent rich), so that as it is

drawn or driven into the mushy region and cooled,
solvent is deposited and growth accelerated, rather
than the reverse. Inasmuch as this entrainment of the

bulk liquid must involve growth, it does not seem to
be a very probable cause of side arm detachment.
What most clearly does promote the melting off of
side arms, more effectively than anything else, is de-
celeration of the dendritic growth front.Pl In the co-
lumnar region of a casting, the growth front is
always decelerating, approximately parabolically,
and the temperature gradient is falling. Under steady
state conditions, a preferred stable primary spacing
and tip curvature prevail (e.g., Reference 7), but with
deceleration, although the tip curvature changes im-
mediately with velocity (r:V _ constant), the pri-
mary spacings adjust more slowly (e.g., References
2 and 8) and are always smaller at a given rate than
the steady state, stable solution.ml Consequently, the
conditions at the actual growth front are always in-
compatible with those behind the front, where
growth took place more rapidly. This transient hys-
teresis effect continuously raises the local solute con-
centration (and temperature) within the array and
thus promotes melting and detachment which are not
evident under steady state conditions.

It may be concluded that interdendritic fluid flow does
not contribute directly to crystal multiplication by causing
dendrite fragmentation, but instead aids in the transport of
those dendrite fragments which have already formed by an-
other mechanism. This may seem to be a minor point from
a practical standpoint, but it is surely important in under-
standing what is actually happening.

Fig. 4--Schematic representation of various radii of curvature at a side

arm root and within a dendritic array, r,, r:, etc.

entropy of fusion. For this reason, the curvature bal-

ance allows these necked roots to persist in equilib-
rium with the array for long times, unless either the

ambient temperature or the ambient interdendritic
solute concentration rises. Lower observed values of

r, and r. are about 2.5 p.m (Figure I). Taking data
for aluminum,t6J the Gibbs-Thompson coefficient I"
= o'sJAS _ 10 -7 inK, and this gives curvature un-
dercoolings of ___0.04 K around such regions, com-

APPENDIX

The yield strength at the melting point can be estimated
following the method of Frost and Ashby: v°l

cr (T) = 10 -_'E(T)

T - 300 "xE (7") = E,oo I + B •(---y_---))

Where E(T) is the elastic modulus at an absolute tempera-
ture T, E_oois the modulus at 300 K, and 7",,is the absolute
melting temperature. Taking E_oo as 67 GPA and B as
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- 1.33, we obtain o_,(T,,) = 6.5 MPa. Previous experiments
to determine the creep/superplastic behavior of aluminum
base alloys at temperatures up to 540 °C have shown that
these stresses would correspond to a strain rate of-10 -s
s-l.t"_ Consequently, we have reduced the anticipated yield
stress by an order of magnitude to 0.6 MPa, where strain
rates of _--5 × 10 -_ s-_ would be expected and hence more
in keeping with a concept of (normal) elastic behavior
within the time scales experienced during solidification.

Figures 1 and 4 are from unpublished work by G.C. Hansen
(MTU). This work is part of a research program concerned
with intrinsic nucleation and the grain structure of castings,

supported by the National Science Foundation, Division of
Materials Research, Metallurgy Program, Grant No. DMR
92-06783, and the National Aeronautics and Space Admin-

istration, Microgravity Program, through NASA-Lewis Re-
search Center, Grant No. NAG-3-1462.
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Modeling of Dynamic Material
Behavior: A Critical Evaluation of the

Dissipator Power Co-content

Approach
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Several articles have been published recently in which
the high-temperature forming of metals has been analyzed
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in terms of the dissipator content G and the dissipator co-
content j.l_-8) Because of the interest elicited by this ap-

proach, which involves predicting the temperature and
strain rate ranges over which optimum workability is ex-
pected to be attained, it seems opportune to re-examine the
foundations of this analysis and to consider how it can be

given a physical interpretation.
We begin by recalling the conventional definitions tgl of

G and J:

e j E

Jd 0 0

J(¢)=Z f k,j or = _-- dff
J_ 0 0

[2]

In these equations, _,, and o',j are the components of the
strain rate and stress tensors, respectively, and E and ff de-
note the von Mises equivalent strain rate and stress.

These definitions were proposed (in a different notation)
by Hilltg) in 1956 as applicable to viscoplastic materials by
analogy with the equivalent functions U(e) and V(o') em-
ployed for elastic materialsY °) In the latter case, U(e) rep-
resents the strain energy density, as given by

t'l]

=5:f d,,, [3]
t.) 0

from which it follows that

OU
[4]

Orii = _E_._

It is of particular interest that U(e) coincides with the in-
ternal energy per unit volume stored in the material under
load; this energy component is recoverable on unloading.

The so-called complementary energy density V(er) does
not have such a straightforward physical interpretation. It
is derivable from U(e) by means of the following Legendre
dual transformation:

v (_r)= _ _,, e,, - U [5]
I,/

As

it is evident that

%;:

z (,r) = _ f E,,d_,,
fd 0

[6]

_V

_" = ao-,_ [7]

Furthermore, in the case of linear elastic materials, U = V

= E _,,e,/2.
t4

Figures l(a) and (b) illustrate elastic and viscoplastic
cases, where the stress, strain, and strain rate tensors can
be reduced to single components (e.g., as in uniaxial ten-
sion). In Figure l(a), U and V are represented by the areas
below and above the stress-strain curve, respectively. In a
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